Luonnonfilosofian seura

Paul Talvio 15.2.2003

Hei melliniläiset!

Alla on kopioituna se kappale Einsteinin kirjasta, jota Mellin tarkastelee. Koska kirjan kuvaus on aika niukka, niin olen lisännyt selventäviä tekstejä hakasulkeisiin. Miltä ne teistä tuntuvat?

Terv. Paul

Albert Einstein: Relativity
Part I: The Special Theory of Relativity

The Relativity of Simultaneity

Up to now our considerations have been referred to a particular body of reference, which we have styled a " railway embankment." We suppose a very long train travelling along the rails with the constant velocity v and in the direction indicated in Fig 1. People travelling in this train will with advantage view the train as a rigid reference-body (co-ordinate system); they regard all events in

reference to the train. Then every event which takes place along the line also takes place at a particular point of the train. Also the definition of simultaneity can be given relative to the train in exactly the same way as with respect to the embankment. [Tämä junakoordinaatiston kuvaus tarkoittaa sitä, että junassa olija tietää olevansa junan puolivälissä ja että hän uskoo valon kulkevan junan suhteen nopeudella c] As a natural consequence, however, the following question arises :

Are two events (e.g. the two strokes of lightning A and B) which are simultaneous with reference to the railway embankment also simultaneous relatively to the train? We shall show directly that the answer must be in the negative.

When we say that the lightning strokes A and B are simultaneous with respect to the embankment, we mean: the rays of light emitted at the places A and B, where the lightning occurs, meet each other at the mid-point M of the length A B of the embankment. [ Ratapenkalla olija tietää, että hän on yhtä kaukana pisteistä A j B ja että valo kulkee ratapenkkaan nähden nopeudella c. Mitään apriori oletusta salamaniskujen samanaikaisuudesta ei tehdä, mutta ratapenkalla olija päättelee, että ne ovat olleet samanaikaisia, koska valo niistä saavutti hänet samanaikaisesti.] But the events A and B also correspond to positions A and B on the train. Let M1 be the mid-point of the distance A B on the travelling train. Just when the flashes (as judged from the embankment) of lightning occur, this point M1 naturally coincides with the point M but it moves towards the right in the diagram with the velocity v of the train. If an observer sitting in the position M1 in the train did not possess this velocity, then he would remain permanently at M, and the light rays emitted by the flashes of lightning A and B would reach him simultaneously, i.e. they would meet just where he is situated. Now in reality (considered with reference to the railway embankment) he is hastening towards the beam of light coming from B, whilst he is riding on ahead of the beam of light coming from A. Hence the observer will see the beam of light emitted from B earlier than he will see that emitted from A. Observers who take the railway train as their reference-body must therefore come to the conclusion that the lightning flash B took place earlier than the lightning flash A. [Olennaista on sanonta “come to the conclusion”. Koska junassa olija tietää olevansa yhtä kaukana junan päistä ja uskoo valon kulkevan junaan nähden nopeudella c, niin hän uskoo aivan kuin ratapenkalla olijakin, että hänestä yhtä kaukana olevista lähetyspisteistä valo saavuttaa hänet yhtaikaa, jos välähdykset ovat olleet yhtaikaisia. Kun hän nyt ei saa valosignaaleja yhtaikaa niin hän päättelee, että välähdykset ovat olleet eriaikaisia.] We thus arrive at the important result:

Events which are simultaneous with reference to the embankment are not simultaneous with respect to the train, and vice versa (relativity of simultaneity). Every reference-body (co-ordinate system) has its own particular time ; unless we are told the reference-body to which the statement of time refers, there is no meaning in a statement of the time of an event.

Now before the advent of the theory of relativity it had always tacitly been assumed in physics that the statement of time had an absolute significance, i.e. that it is independent of the state of motion of the body of reference. But we have just seen that this assumption is incompatible with the most natural definition of simultaneity; if we discard this assumption, then the conflict between the law of the propagation of light in vacuo and the principle of relativity (developed in Section 7) disappears. [Tämä on suhteellisuusteorian kuvauksissa villakoiran ydin. Einstein toistaa se melkein jokaisessa kappaleessa. Kuvaukset väännetään väkisin sellaiseen muotoon, että voidaan säilyttää ”law of the propagation of light in vacuo”. Tarkemmin sanottuna, että valon nopeus on vakio jokaisen havaitsijan mielestä hänen omassa koordinaatistossaan. Hänen oma koordinaatistonsa on sellainen koordinaatisto, jossa hän itse on levossa. Samanaikaisuudenkin suhteellisuus on seurausta tästä pakkomielteestä, se ei ole primäärinen postulaatti. Suppea suhteellisuusteoria rakentuu vain kahdelle postulaatille: 1) Valon nopeus on vakio ja suurin mahdollinen nopeus kaikissa inertia- (tasaisen nopeuden) koordinaatistoissa. 2) Kaikki luonnonlait toimivat samalla tavalla näissä koordinaatistoissa. Siksi ilmiöt väännetään koordinaatistomuunnoksilla (Lorentz-transformaatioilla) sellaiseksi, että yllä olevat postulaatit pitävät paikkansa. Einstein perustelee aikadilaation, pituuskontraktion ja samanaikaisuuden suhteellisuuden systemaattisesti kirjassaan sillä, että niiden avulla voidaan säilyttää ”law of the propagation of light in vacuo”; ei sillä, että asia voitaisi jotenkin johtaa luonnosta. Oletuksen vahvistuksena käytetään Maxwellin lakia ja havaintoja, jotka osoittavat, että sähkömagneettiset aallot leviävät symmetrisesti lähettimestä, vaikka maa kiitää orbitaaliradallaan 30km/s. Lisäksi vahvistuksena tulee Michelson-Morleyn kokeen nollatulos.

We were led to that conflict by the considerations of Section 6, which are now no longer tenable. In that section we concluded that the man in the carriage, who traverses the distance w per second relative to the carriage, traverses the same distance also with respect to the embankment in each second of time. But, according to the foregoing considerations, the time required by a particular occurrence with respect to the carriage must not be considered equal to the duration of the same occurrence as judged from the embankment (as reference-body). Hence it cannot be contended that the man in walking travels the distance w relative to the railway line in a time which is equal to one second as judged from the embankment.

Moreover, the considerations of Section 6 are based on yet a second assumption, which, in the light of a strict consideration, appears to be arbitrary, although it was always tacitly made even before the introduction of the theory of relativity.

[Mellinin valopisteitten suhteellisuus kuvaa ylläkerrottua junaesimerkkiä seuraavasti: Välähdyksen jälkeen valopisteet erkanevat. Toiset jäävät ratapenkan suhteen paikalleen ja toiset seuraavat junaa. Näin ollen välähdysten tapahtumapaikkojen etäisyys säilyy sekä ratapenkalla olijalle, että junassa olijalle samana. Tällöin kumpikin saa valosignaalit tapahtumista samanaikaisesti. Samanaikaiset tapahtumat siis myös havaitaan samanaikaisina havaitsijoiden liiketiloista riippumatta. Samanaikaisuus ei siis ole suhteellista! Myös Mellinin maailmassa koordinaatistot ovat itsenäisiä havaintokehyksiä. Tässä mielessä perusajatus on molemmissa teorioissa sama.]

 
© 2007 - Palvelun tekninen toteutus Optinet Oy